

Available online at ScienceDirect

Resuscitation

Correspondence

Cardiac arrest and medical technological innovations in the next decade: How about artificial intelligence-assisted tailored cardiopulmonary resuscitation?

To the Editor,

We have read with great interest the recent article from Semeraro et al. on the next medical technological innovations and their impact on management of cardiac arrest. The authors have provided a forward-thinking analysis on how technological advancements are poised to transform the resuscitation field, rightly identifying the potential for artificial intelligence (AI) to restructure every aspect of the chain of survival. Thus, authors have envisioned the future implementation of sensors and wearable devices capable to continuously monitor the patient status, promptly individuate a cardiac arrest and activate the emergency system, together with robots that quickly initiate CPR and deliver defibrillation, and AI-staffed brain interfaces to optimize post-resuscitation care and prognostication.

We would like to consider another important technological development that deserves to be mentioned in the above vision of the next future, namely the "Al-assisted tailored CPR", i.e. CPR maneuvers guided by physiological feedbacks (e.g. aortic pressure, capnogram, ECG waveform analyses, brain or tissue oximetry and/or microcirculation and ultrasound) whose information is integrated through Al-based decision algorithms. While current CPR guidelines recommend a one-size-fits-all protocols, future CPR will approach patients with tailored interventions, treatments, and drug dosing toward individual patient's medical history and physiology thank to innovative devices featuring AI, as described by Semeraro et al. However, although the concept and first preclinical studies on tailored CPR have been conceived more than 10 years ago, this approach is still far away from its wide clinical implementation, being only small pilot feasibility studies available till now. 3-5

Indeed, replicating Semeraro's approach using ChatGPT-4 and Gemini Advanced with the Gartner Hype Cycle (GHC) for Al 2023 as reference, tailored CPR is still considered at its early-stage research. On the Gartner Hype Cycle, given the nascent state of integrating Al with personalized CPR interventions, this technology is likely in the Innovation Trigger phase, moving towards the Peak of Inflated Expectations. The interest is growing, and early research

is promising, but practical, regulatory, and technical challenges need to be addressed before it can move through the subsequent phases (Table 1).

While the potential is significant, the journey of Al-assisted tailored CPR through the Gartner Hype Cycle is still long, prior to achieve widespread clinical adoption and deliver on its promises to unequivocally revolutionize CPR and improve cardiac arrest outcome significantly. A decade has passed since this technology was framed and additional ten years are needed, based on current chatbots and virtual assistants, leading to an overall 20-year development period. Unfortunately, like the Al-assisted tailored CPR technology, we believe that a similarly long timeline of approximately two decades is necessary to achieve all the new advances described by Semeraro et al. Nevertheless, we would also like to be confident that ChatGPT4 and Gemini Advanced predictions are correct so that the visionary dream depicted by Semeraro likely become reality by 2034.

Disclosure

GR is ERC Director Congresses. Authors utilized ChatGPT-4 to create the content of Table 1. Subsequently, authors reviewed and edited the content as necessary, assuming full responsability for the publication's accuracy.

CRediT authorship contribution statement

Alberto Cucino: Data curation, Formal analysis, Methodology, Writing – original draft. **Francesco Palmisano:** Data curation, Formal analysis, Software. **Giuseppe Stirparo:** Conceptualization, Methodology, Supervision, Writing – review & editing. **Giulia Merigo:** Formal analysis, Investigation, Writing – original draft.

Table 1 - Predictive implementation timeline for Al-assisted tailored CPR.

Time	Phase	Interventions
Now	Innovation Trigger	 Emergence of technology from research labs and pilot programs. Key developments: Al algorithms that can analyze real-time patient data such as ECG, oxygen saturation, and other vital signs during cardiac arrest Machine learning models trained on large datasets of past CPR events to predict the most effective intervention strategies for different scenarios Neural networks to improve the accuracy of predictions and recommendations for CPR techniquesEarly prototypes of Al-assisted CPR devices or software, capable of providing real-time feedback to emergency responders Proof-of-concept studies demonstrating the potential of Al to improve the effectiveness of CPR by providing personalized recommendations
1–2 years	Peak of Inflated Expectations	Media hype and coverage of successful pilot projects, leading to high public and professional expectations Early adoption from some hospitals and emergency services on a trial basis Success stories: Clinical trials report positive outcomes, with Al-assisted CPR showing improved survival rates compared to traditional methods Case studies highlight significant improvements in patient outcomes due to tailored interventionsInvestor interest surges in venture capital investment in startups and companies developing Al-based medical technologies for CPR
2–4 years	Trough of Disillusionment	 Implementation challenges: Integration issues with existing medical devices and protocols Regulatory hurdles in obtaining regulatory approvals from bodies like the FDA or EMA Security and data privacy concernsMixed results from some trials and implementations, leading to skepticism and disappointment Provider shakeout from Al-driven CPR due to commercial viability issues
4–6 years	Slope of Enlightenment	 Improved technologies: Refined AI models with Improved accuracy and reliability based on feedback from initial implementations Second-generation products with more advanced and user-friendly AI-assisted CPR devices and softwareWider understanding: Clinical guidelines and best practices development for using AI in CPR Educational programs for emergency responders on how to effectively use AI-driven CPR toolsSuccessful pilots demonstrating the benefits of tailored CPR interventions Evolving standards begin to evolve to accommodate and incorporate AI-based CPR techniques
6–10 years Detailed Analysis	Plateau of Productivity of Tailored Cardiopu	 Mainstream adoption: Widespread use (Al-driven tailored CPR interventions become standard practice) in hospitals, ambulances, and other emergency medical settings Proven effectiveness of improved patient outcomes, leading to broader acceptance and useRegulatory acceptance with clear guidelines and approved Al-assisted CPR devices for widespread use

Giuseppe Ristagno: Conceptualization, Methodology, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

- Semeraro F, Schnaubelt S, Malta Hansen C, Bignami EG, Piazza O, Monsieurs KG. Cardiac arrest and cardiopulmonary resuscitation in the next decade: predicting and shaping the impact of technological innovations. Resuscitation 2024;200:110250.
- Bray J, Rea T, Parnia S, Morgan RW, Wik L, Sutton R. Wolf Creek XVII Part 6: physiology-guided CPR. Resusc Plus 2024;18:100589.

- Sutton RM, Friess SH, Bhalala U, et al. Hemodynamic directed CPR improves short-term survival from asphyxia-associated cardiac arrest. Resuscitation 2013;84:696–701.
- Ruggeri L, Fumagalli F, Merigo G, Magliocca A, Ristagno G. Amplitude spectrum area measured in real-time during cardiopulmonary resuscitation – how does this technology work? Resuscitation 2023;191:109941.
- Koyama Y, Matsuyama T, Inoue Y. Association between haemodynamics during cardiopulmonary resuscitation and patient outcomes. Resuscitation 2022;170:295–302.

Alberto Cucino

Department of Anaesthesia and Intensive Care Medicine, APSS Trento, Provincia Autonoma di Trento, Italy

Francesco Palmisano

Hospital Education and Training Division, APSS Trento, Provincia Autonoma di Trento, Italy

Giuseppe Stirparo

Agenzia Regionale Emergenza Urgenza - AREU, Milan, Italy

Giulia Merigo

Department of Biomedical Sciences for Health, University of Milan, Italy

Giuseppe Ristagno*

Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy

Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy

* Corresponding author at: Department of Pathophysiology and Transplantation, University of Milan, Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy.

E-mail address: gristag@gmail.com.

Received 12 June 2024 Accepted 13 June 2024

https://doi.org/10.1016/j.resuscitation.2024.110290

© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.